整合信息理论引入了一种精确理解意识程度的方法,称为Φ或phi(发音为fi)。Φ用比特表示,它是在系统进入一种特定状态时对系统中出现的不确定性减少的量化表达,该值要大于系统各部分独立产生的信息。(记住信息就是不确定性的减少。)系统的部分(即模块)解释了尽可能多的非整合的、独立的信息。因此,如果脑的所有单独加以考虑的部分已经解释了多数信息,那么进一步的整合几乎不会出现。Φ测量该网络当前状态中协同的程度,在这个程度上系统要大于其部分之和。因此,Φ可以被视为对网络整体性的一种测量。
整合信息理论做出了许多预测,其中一个较为反直觉的、强有力的预测是整合信息产生于系统内部的因果交互作用。当那些交互作用不再发生时,即使系统的实际状态保持不变,Φ也会减少。
或许与你一样,我也惊叹于迪拜的哈利法塔(Burj Khalifa),它在沙漠的蔚蓝天空下巍然耸立,其高度约有1千米。当我在我的计算机屏幕上看到这座摩天大楼时,我的视觉皮层中表征其形状的神经元被激活了,而我们的听觉皮层几乎是沉寂的。假定我听觉脑(皮层)中的所有神经元因短效的巴比妥盐酸而沉默,而我的形状神经元继续对这个像阴茎一样的结构产生反应,我将不会听到任何声音。如果直觉上最初没有声音,那么也不应该有多大差别。可是整合信息理论预测:即使在两种情况下我的脑活动相同(是视觉形状中心的活动,听觉区没有任何活动),Φ以及知觉体验也会不同。神经元能够发放但却没有发放这个事实是有意义的,并且这个事实也完全不同于这种情形:神经元不能发放,因为它们被人为地使之沉默了。
有关夏洛克·福尔摩斯(Sherlock Holmes)的著名短篇故事中有一篇是《银色马》(Silver Blaze)。它的情节基于“狗在夜晚奇怪的发病率”,其中这位侦探向无能的警察探员指出狗没有叫这个事实。如果狗没有叫是因为它被捂住了嘴,这本没有什么值得注意的。但是它的嘴没有被捂住而且也没有叫,这是因为它认识谋杀者。在脑内也是如此,不管是演奏的乐器,还是没有演奏的乐器,皮层-丘脑管弦乐队的所有乐器都至关重要。尽管这个例子中感受质的实际差别是微小的,但灵敏的心理物理学技术应当能够识别它。
朱利奥整合信息理论的这个整体方面与如下想法并不抵触,这个想法是:对特定种类的感受质而言,脑的某些部分比其他一些部分更重要。关闭皮层中的视觉形式中心将几乎消除摩天大楼的知觉印象,同时却几乎不会影响世界产生声响的方式。相反,关掉听觉皮层几乎不会影响对这个世界最高建筑的视觉,但却会使我耳聋。因此,对颜色、声音和自主性的神经相关物的探索仍然有意义。
计算Φ相当苛刻,因为必须考虑分割系统的所有可能方式,包括将这个网络分为两部分的每个方式,将其分为三部分的所有方式等,直到人们到达原子层次的分割,在这个层次上组成网络的所有单元都被认为是孤立的。在组合数学中,所有这些分割的数量是贝尔数(Bell’s number),它是巨大的。对于构成秀丽隐杆线虫神经系统的302个神经元,这个网络能被划分为部分的方式的数量是一个超天文的数字——10后面跟着467个零。因此,计算任何神经系统的Φ是极其困难的,因此需要启发法、快键法和近似法。
小网络的计算机模拟表明获得高Φ值很困难。通常,这类回路仅拥有几个比特的整合信息。高Φ网络既需要专门化又需要整合,这是皮层-丘脑复合体中神经回路的标志。Φ表示有意识状态的数量,这些有意识状态是与其自身的部分进行因果交互作用的任何网络相关的。系统越整合和分化,它就越有意识。
神经元之间动作电位的同步发放是另一种整合手段。注意,如果所有脑神经元同步发放,正如在癫痫大发作中,整合将是最大的,而分化将是最小的。最大的Φ是要在这两个相反趋势之间找到最佳位置。
根据神经元的连接,大脑皮层中椎体神经元的显性性状就是它们大量兴奋的局部连接,辅以与远处神经元的少量连接。由这类组分组成的网络在数学上称为小世界图(small-world graphs)。在这类网络中任何两个单元,任何两个皮层神经元仅仅相距几个突触。这个属性往往会使Φ最大化。
相反,Φ对于由许多小的、准独立的模块组成的网络来说是低的。这可能解释了为什么尽管小脑神经元数量庞大但是对于意识没有太多贡献:它的突触组织像晶状体一般,以至于它的模块活动彼此独立,远距模块之间几乎没有交互作用。
![]()
声明:脑医汇旗下神外资讯、神介资讯、神内资讯、脑医咨询、Ai Brain 所发表内容之知识产权为脑医汇及主办方、原作者等相关权利人所有。




