方舟1,刘伯夫1, 2,余海放1, 2
1. 四川大学华西医院急诊科/急诊医学研究室(成都 610041)
2. 四川大学灾难医学中心(成都 610041)
基金项目:四川省科学技术厅科技培训项目(2023JDKP0036)
通信作者:余海放,Email:yuhaifang@wchscu.cn
参与讨论专家详见末尾
【摘要】严重颅脑外伤(traumaticbraininjury,TBI)患者的死亡率较高,其常在伤后几个小时内死亡。创伤现场、转运途中及院内早期的管理与TBI患者结局密切相关,患者经不同院前救治后其最终救治成功率存在差异,TBI院前救治质量有待进一步提高。因此,TBI院前管理指南应运而生,该指南的第三版于2023年4月发布。为了提供对院前TBI救治的更好建议和指导,该文就第三版院前TBI管理指南更新要点进行解读。
【关键词】颅脑外伤;院前管理;院前评估;院前治疗;院前决策
【DOI】10.7507/1002-0179.202310264
Interpretation of Prehospital Guidelines for the Management of Traumatic Brain Injury
- 3rd Edition
FANG Zhou1, LIU Bofu1, 2, YU Haifang1, 2
1. Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan
610041, P. R. China
2. Disaster Medical Center, Sichuan University, Chengdu, Sichuan 610041, P. R. China
Corresponding author: YU Haifang, Email: yuhaifang@wchscu.cn
【Abstract】Patients with severe traumatic brain injury (TBI) have a higher mortality rate, often dying within a few hours after injury. The management of trauma site, transportation, and early hospital stay is closely related to the outcome of TBI patients. The final success rate of TBI patients varies after different prehospital treatments, and the quality of prehospital treatment for TBI needs to be further improved. Therefore, the TBI prehospital management guideline emerged, and the third version of the guideline was released in April 2023. In order to provide better advice and guidance on the treatment of prehospital TBI, this article interprets the key points of updating the third edition of the prehospital TBI management guideline.
【Key words】Traumatic brain injury; prehospital management; prehospital assessment; prehospital treatment; prehospital decision-making
每年全球颅脑外伤(traumatic brain injury,TBI)患者约6900万[1],重度TBI患者具有较高的死亡率,预防继发性脑损伤和医源性伤害是改善TBI患者预后的关键,院前TBI患者的管理至关重要。因此,国际脑外伤基金会于2002年发布院前TBI管理指南,并于2008年更新至第二版。然而,从第二版指南发布至今已过去15年,已有大量新的循证医学证据更新并表明城乡及不同紧急医疗服务中心的TBI院前管理实践仍存在差异,具有巨大的改进空间。为了提高不同区域、不同紧急医疗服务中心的院前TBI管理水平,第二版院前TBI管理指南的编写专家通过审查、评估和讨论2005年5月-2022年1月产生的临床循证证据,于2023年形成更新版(第三版)指南(以下简称“第三版指南”)[2],为TBI院前管理提供最新循证指导建议40个,其中强建议30个,弱建议10个。本文通过查阅文献并与既往指南推荐内容进行对比,就第三版院前TBI管理指南更新要点进行解读。
TBI患者在院前可能会出现由低氧、低灌注和/或缺血引起的二次损伤。低血压会降低TBI后的脑灌注压,造成不良预后。即使是短暂的低氧和低血压也可加重TBI患者的脑损伤,而两者叠加后产生的影响则更加显著。院前专业人员应该不断监测、预防,并迅速纠正可疑TBI患者的低氧、低/高血压、过度通气和低/高体温。
1.1 TBI患者的院前氧合管理
第三版指南强烈推荐:应使用脉搏血氧仪持续监测院前TBI患者的血氧饱和度,尽早给氧以维持血氧饱和度在90%以上(推荐强度:强)。
TBI患者经常出现低氧血症,一项小规模研究(55例患者)显示,55%的航空医疗转运的TBI患者氧饱和度低于90%[3]。2009年Davis等[4]回顾性分析3420例中度至重度TBI患者的资料后,发现低氧血症与生存率下降相关,低氧血症定义为到达急诊科时动脉血氧分压<92%)患者的病死率为37%[5]。此外,还有研究显示重度TBI患者应接受持续脉搏氧饱和度监测,以便快速纠正低氧[6]。上述研究均表明院前对中度至重度TBI患者进行连续或至少近乎连续的脉搏氧饱和度监测并避免低血氧非常重要。
1.2 TBI患者的院前血压管理
第三版指南新增对血压袖带尺寸规范的推荐:血压袖带应与患者体型匹配。婴儿袖带尺寸6cm×12cm,儿童9cm×18cm,体型较小的成年人12cm×22cm,常规体型的成年人16cm×30cm,体型较大的成年人16cm×36cm(推荐强度:强)。
第三版指南新增的内容旨在更加精准地测量院前TBI患者的血压,进一步反映了TBI患者院前血压管理的重要性。第三版指南推荐:院前应确测量收缩压和舒张压,要避免低血压(收缩压<100 mm Hg),也要预防高血压(收缩压≥150 mm Hg)(推荐强度:强);条件允许时应频繁测量(每
5~10 min)或持续监测(推荐强度:强)。TBI 患儿的收缩压应保持在其所处年龄段对应目标收缩压的第75 百分位数及以上:
① 28 日龄及以下>70 mm Hg;
②1~12月龄>84mmHg;
③1~5岁>90mmHg;
④6岁及以上>100mmHg(推荐强度:弱)。
对于中度至重度TBI患者,低血压会降低脑灌注压,严重影响患者的预后。来自创伤昏迷数据库的数据表明,院前的低血压(单次收缩压低于90mmHg)是TBI患者预后非常敏感的预测因子,相比没有低血压的患者,即使仅有单次低血压,其病死率也增加2倍[7]。一项创伤院前救护优化(excellence in prehospital injury care,EPIC)研究评估了TBI院前管理对中重度TBI患者的影响,这项大规模的观察性研究纳入13151例院前TBI患者,发现在没有严格实施TBI院前管理的队列中,院前低血压与更高的病死率相关[8]。EPIC研究的新数据还进一步表明,血压<90mmHg时低血压程度与持续时间(以分钟为单位)的综合效应即低血压量(hypotension dose)与TBI患者的病死率增加相关,持续低血压时间较长的患者病死率超过50%[9-10]。这些发现强调了更密切监测血压的重要性。
自第二版指南发布以来,已有研究探讨了TBI患者的收缩压阈值问题。EPIC研究特别指出从40mmHg到119mmHg的血压范围内,每增加10mmHg的收缩压,病死率可减少18.8%[11]。更重要的是,该研究表明,在该范围内没有确定的阈值或拐点,既往定义的阈值90mmHg可能并不妥当,因为较高的值与较低的病死率相关。而一项基于日本创伤数据库的研究通过分析严重TBI患者不同血压水平与住院病死率的关系,期望能确定最佳的血压阈值,在研究12537例患者的到院血压后,显示110mmHg的收缩压可能是低血压的最佳阈值[12]。另一项研究分析了34175例TBI患者,同样发现收缩压<110mmHg与住院死亡显著相关[13]。基于上述证据尚未得出统一的低血压阈值证据,第三版指南仍维持了第二版的避免收缩压低于100mmHg的推荐意见。
TBI患者院前的高血压也可能影响预后。严重TBI患者因交感神经强烈兴奋,可出现儿茶酚胺水平升高,导致高血压和其他不良影响[14]。对美国国家创伤数据库中305503例TBI患者临床资料的回顾性分析显示,院前收缩压在160~180mmHg范围内时,患者病死率明显增加,而院前收缩压在190~230mmHg范围内时,患者病死率增加更明显[15]。另一项德国的研究回顾了1993年-2008年8788例TBI患者的临床数据,也发现收缩压>160mmHg组比正常血压组的病死率显著增高(25.3%vs.13.5%,P<0.001)[16]。
1.3 温度管理
第三版指南首次提出:应保持正常体温(推荐强度:弱)。该建议仅基于一项分析11877例患者临床资料的研究,其结果显示低温和高温均与不良预后相关[17]。正常体温带来的优势可能与低温引起的凝血功能障碍和感染易感性以及高温引起的代谢需求增加和能量耗竭有关。
1.4 格拉斯哥昏迷量表(GlasgowComaScale,GCS)评分及其他评分
第三版指南与第二版指南相比,除提升TBI患者院前GCS评分的推荐建议证据级别外,主要更新处为:30min内应再次评估TBI患者GCS评分,并记录影响GCS评分的混杂因素,并定期将GCS评分提供给接诊医院(推荐强度:强)。
GCS评分包括儿童GCS评分,是最广泛使用的临床意识水平评估工具。GCS是一种可重复性较高且相对可靠的标准化方法,用于记录和报告神经系统评估结果。其评估内容包括3个独立的反应:睁眼反应、肢体运动反应和语言反应[18]。尽管有研究发现院前GCS评分并不能准确评估患者最终预后[19],相比其他评分系统(伤害严重度评分、脑部简化损伤评分和简化运动评分)也不能表现出更佳的预测价值[20-21]。但同样也有更多相关研究得出与上述结果不同的观点。一项欧洲研究比较了脑部简化损伤评分≥3分的TBI患者院前和入院时GCS与住院死亡结局的关系,结果发现入院时GCS评分预测死亡的受试者操作特征曲线下面积高于现场GCS评分[22]。但该研究数据缺失较多,可能导致研究结果的偏倚。另一项回顾性研究发现院前和到达医院时GCS评分预测病死率具有较好的受试者操作特征曲线下面积[23]。Hoffmann等[24]对德国创伤患者进行了大规模回顾性分析,发现GCS评分能有效预测死亡(受试者操作特征曲线下面积为0.808)。另有多项研究同样发现GCS与其他评估方法相比(如简化运动评分、简单运动评分等)能更好地预测气管插管、神经外科干预和死亡结果[25-28]。因此,第三版指南仍然强调应用GCS评分的重要性。
TBI患者的院前急救时间对预后的影响仍不清楚(例如转运延迟对预后的影响),故第三版指南未对治疗时机给出明确推荐意见。但基于现有临床经验,第三版指南建议所有疑似TBI患者应该迅速转送,以便必要时能在受伤后 1h 内接受手术。然而,现有临床证据并没有明确院前到入院的时间间隔与患者预后之间的任何关联性。
有研究显示,重度TBI伴急性硬膜下血肿患者如果在受伤4h后才开始评估治疗,病死率高达90%[29]。而出现硬膜下血肿的患者若在受伤后2h内接受评估治疗,其病死率可下降70%[30]。因此,减少院前时间并加快入院后评估和治疗可能有益。Wilberger等[31]研究了受伤后到手术治疗的时间间隔对硬膜下血肿患者预后的影响,发现在4h内接受治疗的患者与 4h以后接受治疗的患者相比,病死率降低10%。近期研究显示,较长的院前到入院的时间间隔与颅内硬膜下血肿患者的病死率增加有关,每增加1分钟院前时间,死亡风险比增至1.03[32];另外一项研究同样发现院前到入院的时间间隔与病死率之间存在关联,经过GCS评分的校正标准化后,每增加1分钟的现场时间,死亡风险比增至1.002[33]。当然,也有研究表明院前到入院的时间间隔并不是患者预后的显著预测因子[34]。
由此可见,TBI患者的院前时间对预后的影响仍不清楚,院前干预的质量和现场提供的治疗及护理可能在患者的预后中起到更重要的作用。
3.1 气道、氧合及通气治疗
第三版指南建议:所有疑似TBI患者在院前急救时应使用鼻导管或面罩持续吸氧,以尽量降低与缺氧有关的继发性伤害。应识别缺氧(血氧饱和度<90%)并给予吸氧进行纠正。若吸氧后仍持续存在缺氧,可实施声门上气道或气管插管等治疗,并通过听诊双肺呼吸音、呼气末二氧化碳分压(ETCO2)和/或二氧化碳波形图检测来确认气管内插管的位置。第三版指南推荐采用正常呼吸频率通气(大约每分钟10次,ETCO235~45mmHg),避免过度通气(ETCO2<35mmHg)。应在建立气管插管的患者中开展持续氧饱和度和ETCO2监测,并动态监测血压(推荐强度:强)。
对于TBI患者的气道管理,院前是否进行气管插管一直存在争议,多项关于院前接受气管插管TBI患者最终预后的研究得到了相互矛盾的结论。既往的研究显示,紧急插管与缺氧和低血压的发生率增加相关,这可能是导致死亡的原因[35]。另外一些回顾性研究也都显示TBI患者院前气管插管和机械通气无法带来好处[36-38]。但也有纳入6项研究的Meta分析显示,经验有限的专业人员进行院前气管插管时,患者的病死率明显更高,而经验较丰富的专业人员进行院前气管插管时则没有这种情况[39]。另外一项质量较高的多中心研究显示,因钝器导致严重、中度至严重或中度TBI且GCS评分为4~12分的患者,其院前气管插管与神经功能预后改善相关,且院前气管插管组的总体病死率也相对较低(13.8%vs.19.5%,P=0.03)[40]。鉴于当前证据的争议性,第三版指南未对院前气管插管给出明确推荐,但强调了普通吸氧无法改善低氧时可实施声门上气道或气管插管。
缺氧可对TBI患者造成显著有害影响,主要通过氧饱和度<90%和/或中心性紫绀[41]来确认是否存在缺氧。纠正缺氧至关重要且更应该预防缺氧。良好的气道管理以保证充分的氧合和通气是TBI患者院前复苏阶段的关键组成部分。自第二版指南发布以来,已明确快速评估和纠正低碳酸血症(继发于过度通气)和缺氧的重要性。美国亚利桑那州的EPIC研究显示,对于气管插管的重度TBI患者,严格执行氧饱和度≥90%可改善出院生存率[11]。
第二版指南已明确TBI患者的过度通气和低碳酸血症与不良结局相关,强调在院前连续监测ETCO2波形的重要性。在TBI急性阶段,患者可能会出现低灌注期,约一半的患者脑血流明显减少,降低到正常水平的2/3[42]。在院前转运期间,TBI患者经常发生意外的过度通气,并与病死率增加相关[43]。这些结果进一步证实避免过度通气是院前TBI复苏的重要策略。
3.2 液体复苏治疗
第三版指南强烈推荐:院前应给予低血压患者等渗液体和/或血液制品(条件允许时)(推荐强度:强);GCS评分<8分且院前怀疑颅内压增高的患者可考虑给予高渗液体复苏(推荐强度:弱)。
对于TBI患者,院前液体复苏旨在预防低血容量、低血压以及由此导致的继发性脑损伤。虽然液体疗法的目标多种多样,但主要目标是增加心脏前负荷和维持心输出量,为大脑提供所需的灌注和氧气,同时不会因为过量输液引起血液稀释或继发性出血。由于目前相关研究中的血压阈值已较低,因此第三版指南推荐在出现低血压之前就应该早期开始院前补液治疗。根据伤害机制(钝伤或穿透伤)的不同,提供的液体种类或容量估算也可能不同,可选择晶体液(等渗或高渗)或胶体液(包括血液或血液替代物)等。第三版指南的更新内容包含了来自6项新研究的证据,提高了现有证据体系的质量,加强了建议的力度,但建议的内容没有显著变化[44-49]。
3.3 怀疑高颅压患者的过度通气
第三版指南对过度通气的推荐维持了第二版的建议:如果TBI患者没有出现颅内疝的迹象,应避免过度通气,通气策略应以达到正常二氧化碳分压(即ETCO2为35~40mmHg)为目标,应避免低碳酸血症,并应使用二氧化碳波形图进行监测。当TBI患者出现情况紧急的脑疝时,可考虑过度通气,应以ETCO2达到30~35mmHg为目标,并使用二氧化碳波形图进行监测(推荐强度:强)。
自从第二版指南推荐非脑疝患者应避免过度通气后,新的循证医学证据也证实了这一推荐的合理性。第三版指南的本部分建议证据主要来源于数项研究均发现TBI患者动脉血二氧化碳分压较低与死亡风险更高和神经功能预后更差相关[29,50-52]。
3.4 怀疑高颅压患者的高渗治疗和氨甲环酸治疗
第三版指南对高渗治疗的推荐维持第二版的建议:建议院前不将高渗疗法(甘露醇和高渗盐水)用于预防性治疗预期可能出现颅内压增高的患者,无论是否伴有颅疝迹象(推荐强度:弱)。另外,第三版指南新增建议:在通常情况下不推荐广泛院前使用氨甲环酸预防性治疗疑似颅内出血或颅内压增高的TBI患者(推荐强度:强)。
第三版指南的本部分建议证据主要来源于2项研究未能证明院前使用高渗液体对预后有改善作用[53-54]。因此,当前证据不支持在院前使用甘露醇或高渗盐水预防性降低颅内压。
近几年院前使用氨甲环酸已得到广泛研究[55-56]。美国和加拿大20个创伤中心的随机双盲Ⅱ期临床试验并未发现使用氨甲环酸的益处[57]。同样,新西兰的BRAIN-PROTECT研究也没有发现任何整体上的益处[55]。鉴于几项大规模、高质量的研究未能支持氨甲环酸对于大多数脑损伤患者的益处,因此第三版指南不建议在院前常规使用氨甲环酸。
第三版指南强烈推荐:所有地区都应建立有组织的创伤救治体系并全面记录救治时间、病情评估和治疗情况(推荐强度:强)。急救服务系统应建立明确的疑似TBI患者到达治疗目的地的转送预案(推荐强度:强)。疑似中度至重度TBI患者应直接送往具备立即CT扫描、神经外科专科治疗、颅压监测和高颅压治疗能力的医疗机构(推荐强度:强)。运送方式的选择应旨在最大程度地缩短确定性治疗的时间间隔(推荐强度:强)。
4.1 区域性创伤中心的建立
TBI患者的有效治疗需要及时将患者送往具备神经创伤处理能力的接收医院。研究已证明,建立区域性创伤中心可降低创伤患者的病死率。美国的一项研究显示,在建立区域性创伤中心后,非TBI患者的病死率降低(从20%降至1%),而TBI患者的病死率也降低(从5%降至0.7%)[58]。另一项美国的回顾性研究比较了区域性创伤中心建立前后TBI患者的预后,发现区域性创伤中心建立后,TBI患者的病死率降低[59]。近期的一项研究显示,建立区域性创伤中心后,TBI患者的住院病死率显著降低(从19%降至14%),6个月病死率同样显著降低(从24%降至20%)[51]。由此可见,建立区域性创伤中心可明显降低TBI患者的死亡并改善预后[60-62]。
4.2 直接送往创伤中心与二次转运至创伤中心
虽然目前研究显示,井然有序的院前救治、分诊和转运至指定创伤中心与TBI患者的良好预后有关[63],但目前的文献还没有明确指出将成年TBI患者送往非创伤中心并随后再次转运到创伤中心,与直接送往创伤中心相比,是否具有明显的益处[64-70]。但一项回顾性研究显示,直接转运或二次转运到Ⅰ级创伤中心并入院接受手术治疗的TBI患者的总体病死率没有差异,但对于GCS评分<9分的患者,接受神经外科干预的时间明显更长,最初被送往非Ⅰ级创伤中心的病死率更高[71]。Johnson等[72]的研究同样提示直接送往创伤中心可使TBI患者获益。
4.3 转运方式的选择
确定何种运输方式(地面转运与空中转运)最佳取决于患者的救治需求是否需要加快转运时间和更高水平的现场救治。多项研究分析了美国国家创伤数据库中地面救护车或空中直升机转运对TBI患者预后的影响,均一致发现由直升机转运的患者生存率更高[73-75]。对于伤势更严重的TBI患者,尤其是GCS评分较低的患者,空中转运的优势更明显[76]。但也有研究未发现空中转运的益处[34,77-79]。因此,第三版指南对转运方式选择的推荐中并没有倾向于空中转运或是地面转运,而强调运送方式选择应旨在最大程度地缩短转运时间。
第三版指南列举的大量新证据表明,在院前对TBI患者进行有组织和科学的医疗救治可以改善患者预后。新的循证证据主要集中在气道、呼吸、循环和其他生理指标的管理上,应针对这些生理指标的异常情况及时采取推荐性干预措施。希望这些新的指导意见能进一步增强第二版指南已取得的显著效益。此外,还需要认识到TBI院前管理中仍有部分推荐意见缺少大样本量随机对照研究的证实,因此仍需继续开展临床研究寻找更强有力的证据支持,进而为患者提供最佳的医疗服务。
利益冲突:所有作者声明不存在利益冲突。
参考文献
1Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg, 2018, 130(4): 1080-1097.
2 Lulla A, Lumba-Brown A, Totten AM, et al. Prehospital guidelines for the management of traumatic brain injury - 3rd edition. Prehosp Emerg Care, 2023, 27(5): 507-538.
3 Stocchetti N, Maas AI. Traumatic intracranial hypertension. N Engl J Med, 2014, 370(22): 2121-2130.
4 Davis DP, Meade W, Sise MJ, et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma, 2009, 26(12): 2217-2223.
5 Chi JH, Knudson MM, Vassar MJ, et al. Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. J Trauma, 2006, 61(5): 1134-1141.
6 Davis DP, Dunford JV, Poste JC, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid sequence intubation of severely head-injured patients. J Trauma, 2004, 57(1): 1-10.
7 Chesnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma, 1993, 34(2): 216-222.
10 Spaite DW, Hu C, Bobrow BJ, et al. Optimal Out-of-hospital blood pressure in major traumatic brain injury: a challenge to the current understanding of hypotension. Ann Emerg Med, 2022, 80(1): 46-59. 8 Spaite DW, Hu C, Bobrow BJ, et al. The effect of combined out-ofhospital hypotension and hypoxia on mortality in major traumatic brain injury. Ann Emerg Med, 2017, 69(1): 62-72. 9 Spaite DW, Hu C, Bobrow BJ, et al. Association of out-of-hospital hypotension depth and duration with traumatic brain injury mortality. Ann Emerg Med, 2017, 70(4): 522-530.e1.
11 Spaite DW, Bobrow BJ, Keim SM, et al. Association of statewide implementation of the prehospital traumatic brain injury treatment guidelines with patient survival following traumatic brain injury: the excellence in prehospital injury care (EPIC) study. JAMA Surg, 2019, 154(7): e191152.
12 Shibahashi K, Sugiyama K, Okura Y, et al. Defining hypotension inpatients with severe traumatic brain injury. World Neurosurg, 2018, 120: e667-e674.
13 Shibahashi K, Hoda H, Okura Y, et al. Acceptable blood pressure levels in the prehospital setting for patients with traumatic brain injury: a multicenter observational study. World Neurosurg, 2021, 149: e504-e511.
14 Jafari AA, Shah M, Mirmoeeni S, et al. Paroxysmal sympathetic hyperactivity during traumatic brain injury. Clin Neurol Neurosurg, 2022, 212: 107081.
15 Barmparas G, Liou DZ, Lamb AW, et al. Prehospital hypertension is predictive of traumatic brain injury and is associated with higher mortality. J Trauma Acute Care Surg, 2014, 77(4): 592-598.
16 Sellmann T, Miersch D, Kienbaum P, et al. The impact of arterial hypertension on polytrauma and traumatic brain injury. Dtsch Arztebl Int, 2012, 109(49): 849-856.
17 Gaither JB, Chikani V, Stolz U, et al. Body temperature after EMS transport: association with traumatic brain injury outcomes. Prehosp Emerg Care, 2017, 21(5): 575-582.
18 Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet, 1974, 2(7872): 81-84.
19 Winkler JV, Rosen P, Alfry EJ. Prehospital use of the Glasgow Coma Scale in severe head injury. J Emerg Med, 1984, 2(1): 1-6.
20 Davis DP, Vadeboncoeur TF, Ochs M, et al. The association between field Glasgow Coma Scale score and outcome in patients undergoing paramedic rapid sequence intubation. J Emerg Med, 2005, 29(4): 391-397.
21 Caterino JM, Raubenolt A. The prehospital simplified motor score is as accurate as the prehospital Glasgow coma scale: analysis of a statewide trauma registry. Emerg Med J, 2012, 29(6): 492-496.
22 Lesko MM, Jenks T, O'Brien SJ, et al. Comparing model performance for survival prediction using total Glasgow Coma Scale and its components in traumatic brain injury. J Neurotrauma, 2013, 30(1): 17-22.
23 Davis DP, Serrano JA, Vilke GM, et al. The predictive value of field versus arrival Glasgow Coma Scale score and TRISS calculations in moderate-to-severe traumatic brain injury. J Trauma, 2006, 60(5): 985-990.
24 Hoffmann M, Lefering R, Rueger JM, et al. Pupil evaluation in addition to Glasgow Coma Scale components in prediction of traumatic brain injury and mortality. Br J Surg, 2012, 9(Suppl 1): 122-130.
25 Thompson DO, Hurtado TR, Liao MM, et al. Validation of the Simplified Motor Score in the out-of-hospital setting for the prediction of outcomes after traumatic brain injury. Ann Emerg Med, 2011, 58(5): 417-425.
26 Haukoos JS, Gill MR, Rabon RE, et al. Validation of the Simplified Motor Score for the prediction of brain injury outcomes after trauma. Ann Emerg Med, 2007, 50(1): 18-24.
27 Gill M, Steele R, Windemuth R, et al. A comparison of five simplified scales to the out-of-hospital Glasgow Coma Scale for the prediction of traumatic brain injury outcomes. Acad Emerg Med, 2006, 13(9): 968-973.
28 Singh B, Murad MH, Prokop LJ, et al. Meta-analysis of Glasgow coma scale and simplified motor score in predicting traumatic brain injury outcomes. Brain Inj, 2013, 27(3): 293-300.
29 Cornwell EE 3rd, Chang DC, Phillips J, et al. Enhanced trauma program commitment at a level I trauma center: effect on the process and outcome of care. Arch Surg, 2003, 138(8): 838-843.
30 Hunt J, Hill D, Besser M, et al. Outcome of patients with neurotrauma: the effect of a regionalized trauma system. Aust N Z J Surg, 1995, 65(2): 83-86.
31 Wilberger JE Jr, Harris M, Diamond DL. Acute subdural hematoma: morbidity, mortality, and operative timing. J Neurosurg, 1991, 74(2): 212-218.
32 Tien HC, Jung V, Pinto R, et al. Reducing time-to-treatment decreases mortality of trauma patients with acute subdural hematoma. Ann Surg, 2011, 253(6): 1178-1183.
33 Dinh MM, Bein K, Roncal S, et al. Redefining the golden hour for severe head injury in an urban setting: the effect of prehospital arrival times on patient outcomes. Injury, 2013, 44(5): 606-610.
34 Lokkeberg AR, Grimes RM. Assessing the influence of nontreatment variables in a study of outcome from severe head injuries. J Neurosurg, 1984, 61(2): 254-262.
35 Denninghoff KR, Griffin MJ, Bartolucci AA, et al. Emergent endotracheal intubation and mortality in traumatic brain injury. West J Emerg Med, 2008, 9(4): 184-189.
36 Haltmeier T, Benjamin E, Siboni S, et al. Prehospital intubation for isolated severe blunt traumatic brain injury: worse outcomes and higher mortality. Eur J Trauma Emerg Surg, 2017, 43(6): 731-739.
37 von Elm E, Schoettker P, Henzi I, et al. Pre-hospital tracheal intubation in patients with traumatic brain injury: systematic review of current evidence. Br J Anaesth, 2009, 103(3): 371-386.
38 Lansom JD, Curtis K, Goldsmith H, et al. The effect of prehospital intubation on treatment times in patients with suspected traumatic brain injury. Air Med J, 2016, 35(5): 295-300.
39 Bossers SM, Schwarte LA, Loer SA, et al. Experience in prehospital endotracheal intubation significantly influences mortality of patients with severe traumatic brain injury: a systematic review and meta-analysis. PLoS One, 2015, 10(10): e0141034.
40 Denninghoff KR, Nuño T, Pauls Q, et al. Prehospital intubation is associated with favorable outcomes and lower mortality in ProTECT III. Prehosp Emerg Care, 2017, 21(5): 539-544.
41 Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India, 2017, 34(1): 47-60.
42 Bendinelli C, Bivard A, Nebauer S, et al. Brain CT perfusion provides additional useful information in severe traumatic brain injury. Injury, 2013, 44(9): 1208-1212.
43 Davis DP, Stern J, Sise MJ, et al. A follow-up analysis of factors associated with head-injury mortality after paramedic rapid sequence intubation. J Trauma, 2005, 59(2): 486-490.
44 Bergmans SF, Schober P, Schwarte LA, et al. Prehospital fluid administration in patients with severe traumatic brain injury: a systematic review and meta-analysis. Injury, 2020, 51(11): 2356- 2367.
45 Blanchard IE, Ahmad A, Tang KL, et al. The effectiveness of prehospital hypertonic saline for hypotensive trauma patients: a systematic review and meta-analysis. BMC Emerg Med, 2017, 17(1): 35.
46 Tan PG, Cincotta M, Clavisi O, et al. Review article: prehospital fluid management in traumatic brain injury. Emerg Med Australas, 2011, 23(6): 665-676.
47 Junger WG, Rhind SG, Rizoli SB, et al. Prehospital hypertonic saline resuscitation attenuates the activation and promotes apoptosis of neutrophils in patients with severe traumatic brain injury. Shock, 2013, 40(5): 366-374.
48 Shackford SR, Bourguignon PR, Wald SL, et al. Hypertonic salineresuscitation of patients with head injury: a prospective, randomized clinical trial. J Trauma, 1998, 44(1): 50-58.
49 Wade CE, Grady JJ, Kramer GC, et al. Individual patient cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma, 1997, 42(Suppl 5): S61-S65.
50 Davis DP, Dunford JV, Ochs M, et al. The use of quantitative endtidal capnometry to avoid inadvertent severe hyperventilation in patients with head injury after paramedic rapid sequence intubation. J Trauma, 2004, 56(4): 808-814.
51 Dumont TM, Visioni AJ, Rughani AI, et al. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. J Neurotrauma, 2010, 27(7): 1233-1241.
52 Caulfield EV, Dutton RP, Floccare DJ, et al. Prehospital hypocapnia and poor outcome after severe traumatic brain injury. J Trauma, 2009, 66(6): 1577-1582.
53 Cooper DJ, Myles PS, McDermott FT, et al. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA, 2004, 291(11): 1350-1357.
54 Smith HP, Kelly DL Jr, McWhorter JM, et al. Comparison of mannitol regimens in patients with severe head injury undergoing intracranial monitoring. J Neurosurg, 1986, 65(6): 820-824.
55 Bossers SM, Loer SA, Bloemers FW, et al. Association between prehospital tranexamic acid administration and outcomes of severe traumatic brain injury. JAMA Neurol, 2021, 78(3): 338-345.
56 Brito AMP, Schreiber MA, El Haddi J, et al. The effects of timing of prehospital tranexamic acid on outcomes after traumatic brain injury: subanalysis of a randomized controlled trial. J Trauma Acute Care Surg, 2023, 94(1): 86-92.
57 Rowell SE, Meier EN, McKnight B, et al. Effect of out-of-hospital tranexamic acid vs placebo on 6-month functional neurologic outcomes in patients with moderate or severe traumatic brain injury. JAMA, 2020, 324(10): 961-974.
58 Guss DA, Meyer FT, Neuman TS, et al. The impact of a regionalized trauma system on trauma care in San Diego County. Ann Emerg Med, 1989, 18(11): 1141-1145.
59 Mullins RJ, Veum-Stone J, Hedges JR, et al. Influence of a statewide trauma system on location of hospitalization and outcome of injured patients. J Trauma, 1996, 40(4): 536-545.
60 Norwood S, Fernandez L, England J, et al. The early effects of implementing American College of Surgeons level II criteria on transfer and survival rates at a rurally based community hospital. J Trauma, 1995, 39(2): 240-244.
61 Hannan EL, Farrell LS, Cooper A, et al. Physiologic trauma triage criteria in adult trauma patients: are they effective in saving lives by transporting patients to trauma centers?. J Am Coll Surg, 2005, 200(4): 584-592.
62 Kelly ML, Roach MJ, Banerjee A, et al. Functional and long-term outcomes in severe traumatic brain injury following regionalization of a trauma system. J Trauma Acute Care Surg, 2015, 79(3): 372-377.
63 MacKenzie EJ, Rivara FP, Jurkovich GJ, et al. A national evaluation of the effect of trauma-center care on mortality. N Engl J Med, 2006, 354(4): 366-378.
64 Fakhry SM, Ferguson PL, Johnson EE, et al. Hospitalization in lowlevel trauma centres after severe traumatic brain injury: review ofa population-based emergency department data base. Brain Inj, 2017, 31(11): 1486-1493.
65 Kuimi BL, Moore L, Cissé B, et al. Influence of access to an integrated trauma system on in-hospital mortality and length of stay. Injury, 2015, 46(7): 1257-1261.
66 Gale SC, Peters J, Hansen A, et al. Impact of transfer distance and time on rural brain injury outcomes. Brain Inj, 2016, 30(4): 437- 440.
67 Pickering A, Cooper K, Harnan S, et al. Impact of prehospital transfer strategies in major trauma and head injury: systematic review, meta-analysis, and recommendations for study design. J Trauma Acute Care Surg, 2015, 78(1): 164-177.
68 Nishijima DK, Gaona SD, Faul M, et al. The association of trauma center transport and long-term functional outcomes in headinjured older adults transported by emergency medical services. Acad Emerg Med, 2020, 27(3): 207-216.
69 Sewalt CA, Gravesteijn BY, Menon D, et al. Primary versus early secondary referral to a specialized neurotrauma center in patients with moderate/severe traumatic brain injury: a CENTER TBI study. Scand J Trauma Resusc Emerg Med, 2021, 29(1): 113.
70 Lecky FE, Russell W, McClelland G, et al. Bypassing nearest hospital for more distant neuroscience care in head-injured adults with suspected traumatic brain injury: findings of the head injury transportation straight to neurosurgery (HITS-NS) pilot cluster randomised trial. BMJ Open, 2017, 7(10): e016355.
71 Prabhakaran K, Petrone P, Lombardo G, et al. Mortality rates of severe traumatic brain injury patients: impact of direct versus nondirect transfers. J Surg Res, 2017, 219: 66-71.
72 Johnson DL, Krishnamurthy S. Send severely head-injured children to a pediatric trauma center. Pediatr Neurosurg, 1996, 25(6): 309-314.
73 Bekelis K, Missios S, Mackenzie TA. Prehospital helicopter transport and survival of patients with traumatic brain injury. Ann Surg, 2015, 261(3): 579-585.
74 Aiolfi A, Benjamin E, Recinos G, et al. Air versus ground transportation in isolated severe head trauma: a national trauma data bank study. J Emerg Med, 2018, 54(3): 328-334.
75 Sun H, Samra NS, Kalakoti P, et al. Impact of prehospital transportation on survival in skiers and snowboarders with traumatic brain injury. World Neurosurg, 2017, 104: 909-918.e8.
76 Davis DP, Peay J, Serrano JA, et al. The impact of aeromedical response to patients with moderate to severe traumatic brain injury. Ann Emerg Med, 2005, 46(2): 115-122.
77 Bulger EM, Guffey D, Guyette FX, et al. Impact of prehospital mode of transport after severe injury: a multicenter evaluation from the resuscitation outcomes consortium. J Trauma Acute Care Surg, 2012, 72(3): 567-573.
78 Di Bartolomeo S, Sanson G, Nardi G, et al. Effects of 2 patterns of prehospital care on the outcome of patients with severe head injury. Arch Surg, 2001, 136(11): 1293-1300.
79 de Jongh MA, van Stel HF, Schrijvers AJ, et al. The effect of helicopter emergency medical services on trauma patient mortality in the netherlands. Injury, 2012, 43(9): 1362-1367.