立体定向放射外科(SRS)是将辐射精确聚焦到靶点或大范围的组织(a precise focusing of radiation to a targeted point or larger area of tissue)。随着技术的进步,放射生物学对这种模式的理解已经落后。虽然在短期和长期随访中均有效,但仍存在不断演变和争议的问题,如给量模式、大分割方案的每次分割给量、分割间隔(dosing pattern, dose per fraction in hypo-fractionnated regimens, inter-fraction interval)等。放射外科的放射生物学并不是单纯的常规分割放疗的延伸,它要求在有其局限性的线性-线性二次模型上进一步评估剂量计算、正常组织和靶组织的生物有效剂量和放射敏感性( it demands further evaluation of the dose calculation on the linear linear-quadratic model, which has also its limits, biologically effective dose, and radiosensitivity of the normal and target tissue)。进一步的研究正在进行,以更好地理解放射外科这一有点争议的话题。
颅内立体定向放射外科(SRS)是一种治疗良恶性疾病的非侵袭性选择。这种技术准确地将高剂量的精确聚焦辐射输送到靶点(功能适应证)或区域(肿瘤,癫痫),同时由于梯度陡峭,使对健康组织的照射最小化。伽玛刀(GK) (Leksell Gamma Knife, Elekta AB, Stockholm, Sweden)的发明由瑞典神经外科医生Lars Leksell创造了放射(和外科)技术领域的范式转变,最初是在功能性疾病和其他适应证,特别是在良性肿瘤、血管畸形、和精神疾病。最初期望的放射生物学效应是组织破坏,如丘脑毁损术。其机制随着治疗适应证的变化而变化。其作用机制尚未完全阐明,且可能因治疗情况和靶向策略而异。在肿瘤的情况下,细胞凋亡可能是细胞死亡的中枢机制;在血管畸形中,SRS通过血栓性内皮增殖、诱导血管闭塞;在功能性疾病中,SRS用于靶向解剖结构中的特定解剖点(如丘脑、、内囊前肢、三叉神经),或靶向更广泛的区域,如癫痫灶,并且作用机制可能不同。最近,发现GK丘脑毁损术治疗震颤显著改变脑回路,甚至加深了我们对SRS局部和远处效应的理解( the discovery of significant brain circuitry changes in GK thalamotomy for tremors has even deepened our comprehension of the local and distant effects of SRS)。其他通常用于SRS的设备有直线加速器(LINACs),射波刀(Accuray, Sunnyvale, CA, USA),以及最近的Zap外科系统(Zap Surgical Systems Inc., San Carlos, CA, USA)。
自现代神经外科开始以来,神经外科医生一直不接受放射技术。早在1912年,Hirsch就将镭探头经蝶入路置入了一位肢端肥大症患者的蝶鞍。哈维·库欣(Harvey Cushing )为800多例脑胶质瘤患者做了手术。他在一小部分病人身上植入了被称为“辐射炸弹”的放射性镭针。他对结果不满意,没有继续这样的做法。近距离放射疗法一直使用到20世纪30年代。
对生物物理学和放射生物学原理的基本理解对于设计和安全实施任何放射治疗是必不可少的。单次SRS治疗通常被认为是大分割的极限。然而,由于不同的放射生物学机制,这种说法并不一定正确。立体定向放射治疗的单次分割或大分割方案现在可能从1次分割向2-5次分割发展,特别是在Leksell ICON型和涉及视神经旁脑膜瘤(the paraoptic meningiomas)的治疗中。
为了了解大分割SRS的生物学效应,我们需要评估每次分割给量对肿瘤和正常组织的影响。在引入SRS之前,几乎所有颅内靶区的放射形式都会被分割。这种模式是基于恶性(快速生长的)细胞系的放射生物学生存模型,这将进一步造成肿瘤的损伤,同时保留邻近的正常组织。直到最近以前,对生长缓慢的肿瘤的反应几十年来一直被认为是不清楚的。
目前的SRS治疗计划是以物理辐射剂量为金标准。然而,考虑对靶区和周围健康组织更显著的生物学效应并不能仅用该参数来评估。
本文就探讨SRS放射生物学时应考虑的生物学因素,包括固有组织放射敏感性、细胞周期、旁观者效应、细胞氧状态和照射时间(the radiobiology of SRS, including intrinsic tissue radio-sensitivity, cell cycle, bystander effect, cell oxygen status, and the irradiation time)等进行综述。本文的目的不是提出复杂的放射生物学方程,而是提出放射生物学的基本概念及其在SRS中的应用。
基本放射生物学原理
1927年在法国,Regaud和Ferroux证明了用一次剂量的辐射对公羊睾丸进行绝育不可能不引起阴囊皮肤的坏死( it was not possible to sterilize a ram testis with a single dose of radiation without causing the necrosis of the skin of the scrotum.)。相反,如果每天小剂量照射,则可以对动物进行绝育,阴囊的皮肤反应很小。这样的实验打开了潘多拉的盒子,关于这些概念的基本要素还需要进一步讨论。
组织辐射敏感性
放射敏感性是指细胞、组织和器官对辐射的相对敏感性。因此,不同的细胞类型有不同的辐射敏感性。克隆源性细胞的存活通常衡量着这一点。理想情况下,我们应该通过测试患者细胞的内在辐射敏感性来优化患者的剂量。细胞在细胞周期的S期最不敏感,M期最敏感,这就是所谓的“Bergonié和Tribondeau定律”(1906),定律中明确提到,x射线对生殖活性较强的细胞更为有效(“law of Bergonié and Tribondeau”(1906), which stipulates that X-rays are more effective on cells that have a greater reproductive activity.)。事实上,细胞的辐射敏感性与细胞分裂率成正比,与细胞分化程度成反比(cell radio-sensitivity is directly proportional to the rate of cell division and inversely proportional to the degree of cell differentiation. )。大多数I型辐射敏感细胞具有高分裂率、高代谢率、非特化类型和良好的营养状况。对组织辐射敏感性的Casarett分类是基于早期细胞死亡的组织学观察(相对IV型,I型最敏感)。
四个“R”
(更详细的)四个“R”是指:
●对亚致死性损伤的修复
●通过(具有不同敏感性的)细胞周期部分的再分布
●连续放疗之间的细胞再增殖
●乏氧细胞的再氧合。
对亚致死性损伤的修复
辐射引起的DNA损伤是辐射最重要的细胞效应,可引起显著的染色体改变。虽然双链DNA断裂是致死性细胞损伤最常见的原因,但单链断裂可能会累积并最终导致致死性细胞损伤。对亚致死性损伤的修复依赖于组织(早反应和晚反应),大部分在4 - 6个小时(最多24小时)内完成,具有双相反应、1/2快速成分和30分钟T1/2[Radiation-induced DNA damage is the most important cellular effect of the radiation, causing significant chromosomal alteration. Although double-stranded DNA breaks are the most common cause of lethal cell injury, single-stranded breaks may accumulate and eventually cause lethal cell injury. The repair of sublethal damage is tissue-dependent (early versus late-responding) and mostly complete between four and six up to a maximum of 24 hours, with a biphasic response, ½ fast component with 30 minutes T1/2.]。
放射生物学的中心问题之一是什么特定的分子事件将最终解释细胞杀伤?生存曲线设定了边界界限,但最可能的情况是,这是几种反应的整合,反映了几种病变和/或注册位点(sites of registration),每一种反应都可能被修复/错误修复过程进一步调节,这些修复过程是组成性的,或可以被诱导、去诱导,或简单地随剂量而失活.该剂量将额外地在一次能量吸收事件和无限分裂能力的丧失之间放置一个分子、生化和细胞的生物过程[One of the central questions in radiobiology is what are the specific molecular events that will eventually account for cell killing? The survival curve sets the boundary limits, but it is most likely that such is an integration of several responses, which reflect several kinds of lesions and/or sites of registration, each of which might be further modulated by repair/mis-repair processes, which are constitutive or can be induced, de-induced, or simply inactivated with dose.The dose will additionally place a molecular, biochemical, and cell biological process between the primary energy absorption event and the loss of the capability of unlimited division]。
电离辐射的物理阶段意味着光子发射电子(电离)或将它们提高到更高的能级(激发)。电子进一步产生电离。化学相表明,电离分子和自由基随意破坏化学键,从而影响所有细胞分子。早期曾有人尝试将细胞反应与分子反应联系起来。因此,术语亚致死性损伤和潜在致死性损伤(见下文)被用于指定上述细胞和分子反应的修复。许多不完全的DNA修复发生在辐射内和辐射后,特别是对于较长时间的辐射治疗和两次治疗之间的间隔小于24小时[
The physical phase of ionizing radiation implies that photons eject electrons (ionization) or raise them to a higher energy level (excitation). Electrons further engender ionization. The chemical phase suggests that ionized molecules and free radicals break chemical bonds at random, thus affecting all cell molecules. There was an early attempt to connect cellular responses with molecular responses. The terms sublethal damage[33] and potentially lethal damage[34] (see below) have been thus employed as designating repair of both the preceding cellular and molecular responses. Many incomplete DNA repairs occur within and after radiation, especially for longer irradiation treatments and when the interval between two treatments is less than 24 hours.]。
通过(具有不同敏感性的)细胞周期部分的再分布
这与细胞在整个细胞周期部分(具有不同的敏感性:S晚期更有抵抗性,而G1期和S早期最敏感)的再分布有关。一些作者不认为这是必要的,因为细胞很难同步:它们会卡在G0期[This is related to the re-distribution of cells throughout parts of the cell cycle (with different sensitivities: late S being more resistant, whereas G1 and early S being most sensitive). Some authors do not consider it necessary because cells are hard to synchronize: they get stuck in G0.]。
出现在连续的放射治疗之间的细胞再增殖
放射治疗以多次给量进行,给与间隔以使正常组织在两次治疗之间得到恢复。然而,存活的癌细胞也会在治疗本身和从亚致死损伤中恢复的再增殖过程之间增殖,这是治疗失败的一个重要原因。作为时间概念,对于人类肿瘤而言,放疗过程中存活的肿瘤细胞倍增时间可能在4-8天[
Radiotherapy treatments are given in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments.[36] Nevertheless, surviving cancer cells will also proliferate during the intervals between the treatment itself and this process of re-population, a recovery from sublethal damage, which is an important cause of treatment failure.[36] As a notion of time, for human tumors, the doubling time of surviving tumor cells during radiotherapy is probably in the range of 4–8 days.]。
乏氧细胞的再氧合
放疗过程中均匀的肿瘤缩小并恢复正常的血管结构可以显著帮助再氧合,这对肿瘤的控制有重要影响。事实上,大多数实体肿瘤都存在一定程度的缺氧,这是由于异常血管结构的氧输送不足,不能满足快速增殖的癌细胞的要求。同一肿瘤内的氧合水平因区域不同而异,并可进一步演变[It has been previously acknowledged that the shrinking of a homogeneous tumor during irradiation with the restoration of the normal vascular architecture can significantly help re-oxygenation, which substantially affects tumor control.[38] In fact, hypoxia exists to some degree in most solid tumors because of inadequate oxygen delivery of the abnormal vascular structures, which cannot meet the requests of the rapidly proliferating cancer cells.[39] The oxygenation level within the same tumor varies from one area to another and can further evolve.]。
分子氧(O2)是一种有效的化学放射增敏剂,其电子亲和性分子从电离辐射中吸收能量后参与导致DNA损伤产生的化学反应肿瘤乏氧影响放射治疗的结果,因为乏氧的肿瘤细胞对放射和许多抗癌药物有抵抗性。在辐射期间处于乏氧状态的细胞对辐射的抵抗力是同时处于良好氧合状态的细胞的三倍。基础的化学反应在照射后几毫秒内完成,因此,在照射期间必须存在O2才能产生完全的辐射增敏作用。氧为自由基造成DNA损伤留出了时间。这种观察开始于1904年初,当时Hahn提出,受损的血流改变了低能x射线和表面镭斑(superficial radium plaques )的效应;1930年以后,Crabtree和Cramer提出,分子氧是细胞对辐射反应的关键决定因素。匹兹堡团队最近提出,放射外科治疗脑转移瘤,表现出不均匀强化,对肿瘤的控制较差,很好地阐述了基于神经影像学和神经肿瘤学方面的概念。
生存曲线的概念(致死性修复的反概念?)[survival curve (anti-conception of the lethal repair?)]
1977年,Alper提出,生存曲线的肩值可以通过以下两种方式给出:一是随着剂量的增加,病变的产生速率逐渐超过有限时间内的修复速率(修复饱和模型),二是修复系统的逐渐失活(修复失活模型)。因此,Alper提示不存在亚致死性损伤。进一步的研究表明,由于修复能力的饱和或失活,随着剂量的增加,存活曲线会逐渐向下弯曲,从而显示肩部。每增加一次损伤达到饱和是完全有效的,导致生存率随剂量的指数下降[In 1977, Alper has argued that the shoulder of the survival curve is given by either the rate of production of lesions with dose, progressively exceeding the rate of repair within a limited amount of time (repair-saturation model), or the progressive inactivation of a repair system (repair-inactivation model). Thus, Alper suggests that sublethal lesions do not exist. It has further been suggested that the survival curve will progressively bend down with dose, hence displaying shoulder, because of saturation or inactivation of the repair capacity. Reaching saturation for each additional lesion is fully effective, leading to an exponential decline in survival with dose.]。
单次电离辐射后细胞的存活率是单位格雷(1 Gy = 1 J/kg吸收剂量)所测量的吸收剂量的概率函数.单次剂量照射后获得的培养中的哺乳动物细胞存活曲线具有典型的轮廓,包括一个低剂量的肩部区域,然后是一个陡峭倾斜的高剂量区域肩区,反映了低剂量亚致死性细胞损伤的累积,而致死性是由两个或多个亚致死性事件的相互作用引起的[Survival of cells following single doses of ionizing radiation is a probability function of absorbed dose measured in the unit Gray (1 Gy = 1 J/kg absorbed dose). A mammalian cell survival curve obtained following single-dose radiation in culture has a typical outline that includes a low-dose shoulder region, followed by a steeply sloped high-dose region. The shoulder region reflects the accumulation of sublethal cellular damage at low doses, whereas the lethality results from the interaction of two or more such sublethal events.]。
通常认为,单链DNA断裂修复是有效的,相当于亚致死性损伤,而双链DNA断裂是不可修复的,是致死性的线性二次公式描述了这样一个模型,SF = e-(alphaD+betaD2), SF是一个剂量内存活的细胞分数(D), alpha是与单个事件细胞杀伤相关的系数,beta是与亚致死事件相互作用的细胞杀伤相关的系数[It is commonly considered that single-strand DNA break repairs are efficient and correspond to sublethal damage, whereas double-strand DNA breaks are irreparable and lethal. The linear quadratic formula describes such a model, SF = e-(alphaD+betaD2), with SF being the fraction of cells surviving a dose (D), alpha the coefficient related to single-event cell killing, and beta the coefficient related to cell killing through the interaction of sublethal events.]。
损伤类型(α型和β型)
有两种类型的损伤:α型损伤和β型损伤。α / β测量终点对分割效应(修复能力)的敏感性。α是单次打击机制的细胞杀伤率,而β型损伤是双次打击机制的细胞杀伤率。它实际上预测了物理剂量和生物有效剂量(BED,见下文)之间的关系[There are two types of damage: alpha-type damage and beta-type damage. The alpha/beta measures sensitivity of an endpoint to effect of fractionating (capacity for repair). Alpha is the cell kill rate by a single hit mechanism, whereas beta-type damage is the rate of cell kill by a double hit mechanism. It actually predicts the relationship between the physical dose and biologically effective dose (BED, see below)]。
化学辐射损伤的靶点是DNA。辐射可以直接电离DNA分子中的一个原子,或通过形成羟基自由基间接影响DNA。α细胞杀伤是受分离影响较小的组分。因此,较高的α / β比值意味着α细胞杀伤占主导地位,而分离的作用最终会较小。如果周围组织的α / β比值低于靶组织或肿瘤组织,则增加分割将改善治疗比[The target of chemical-induced radiation injury is DNA. Radiation can directly ionize an atom in the DNA molecule or indirectly affect the DNA by forming hydroxyl radicals. Alpha cell killing is the component that is less affected by fractionation. Hence, the high alpha/beta ratio would mean that alpha cell killing predominates and fractionation will eventually have less effect. Increasing fractionation will improve the therapeutic ratio if the surrounding tissue has a lower alpha/beta ratio than the target or tumor tissue.]。
细胞死亡意味着许多行为,包括凋亡、自噬、坏死、衰老和有丝分裂灾难。有学者认为,细胞凋亡、自噬和坏死这三种经典的细胞死亡形式通过激活特定的信号通路而呈现出不同的形态学特征。因此,这些过程可以通过相互连接甚至重叠进行交互,最终的细胞命运是不同细胞死亡程序相互作用的结果[Cell death implies many actions, including apoptosis, autophagy, necrosis, senescence, and mitotic catastrophe. Some authors consider that three classical forms of cell death, apoptosis, autophagy, and necrosis, display distinct morphological features by activating specific signaling pathways.Thus, such processes can cross-talk through interconnecting and even overlapping, and the final cell fate results from the interplay of different cell death programs.]。
有丝分裂突变是在有丝分裂期间发生的一种细胞死亡,被认为是辐射与进一步缺陷的细胞周期检查点(特别是DNA结构检查点和纺锤体组装检查点)和细胞损伤的组合。一些学者将哺乳动物细胞的“有丝分裂灾难”定义为DNA损伤后无法进行复杂的有丝分裂,进而导致损伤和修复[The mitotic catastrophe, a type of cell death that occurs during mitosis, is considered a combination of irradiation with further deficient cell-cycle checkpoints (in particular, the DNA structure checkpoints and the spindle assembly checkpoints) and cellular damage. Some authors defined mammalian cells' “mitotic catastrophe” as a failure to undergo complex mitosis after DNA damage, which further engenders damage and repair]。
因此,α / β比值与不同的肿瘤/组织具有不同的α / β比值有关。低比例与迟发性反应组织[正常中枢神经系统(CNS)]有关,这些组织增殖缓慢,并且可以通过分割获得更大的保护。较高的α / β(范围8 - 12)适用于快速增殖的早期应答组织(肿瘤),分割后的少许保护可能进一步获益。迟发反应组织的α / β为2-4。由于靶区和邻近组织的α / β比值相似,因此良性肿瘤的分割益处降低[The alpha/beta ratio is thus related to the fact that different tumors/tissues have different alpha/beta ratios. The low percentage is related to late-responding tissues [normal central nervous system (CNS)], which are slow-proliferating and benefit from more sparing with fractionation. The high alpha/beta (range 8–12) is for early responding tissues (tumor), which are rapidly proliferating and might further potentially benefit from little sparing with fractionation. The late responding tissue has an alpha/beta of 2–4. The benefit of fractionation is reduced for benign tumors because the alpha/beta ratio is similar for the target and the adjacent tissue.]。
昼夜节律周期
昼夜节律周期(The circadian cycle )导致了系统水平的生物稳态。这一过程的破坏被认为与包括癌症在内的许多病理过程有关.尽管这是一个有争议的概念,但已有研究表明,非小细胞肺癌脑转移在当天早些时候给量与在当天晚些时候给量相比,具有更好的控制率、更好的生存率和较低的CNS相关死因死亡率[The circadian cycle leads the biological homeostasis at a systemic level. Disruption of such a process has been considered responsible for numerous pathological processes, including cancer.[51] Although a debated concept, it has been shown that brain metastases from non-small-cell lung carcinoma had better control, better survival, and a lower rate of CNS-related causes of death when given earlier in the day versus later in the day.]。
线性-二次模型及其在放射外科的适用性
线性二次模型(LQ)是放射生物学和物理学的重要工具之一,被认为是一种合理的放射治疗模型。它提供了细胞存活和递送剂量之间的简单关系。
在LQ公式中,分割以保护组织损伤的程度用α - β比值表示,反映着线性α和二次β贡献相等的剂量。在这方面,高α / β比值的细胞将经历相对恒定的细胞杀伤率,随着剂量的增加。与此同时,低曲率的患者会表现出明显的曲率[The degree to which fractionations spare tissue injury is represented in the LQ formula by the alpha-beta ratio, reflecting the dose at which the linear alpha and quadratic beta contributions are equal. In this respect, cells with high alpha/beta ratios will undergo a relatively constant cell killing rate with increasing doses. At the same time, those with a low one will exhibit a pronounced curvature]。
主要的问题是其更广泛的适用性,因为很容易认为这样的模型对于SRS是失效的。LQ适用于至少18或10 Gy的数据(取决于数据)。它允许比较不同剂量/分割方案的辐射递送P(治愈/compl) = EXP[-K x EXP (-alpha x dose-beta x dose2)],其中alpha为单次打击系数,beta为双次打击系数。一般认为,随着剂量的增加,SRS的BED迅速升高。然而,时间因素似乎更相关,并显著影响BED的最终值。BED下降速度比物理剂量快。放射外科的最有效剂量是通过随时间推移逐步降低剂量来确定的。同样的机制有可能在不久的将来进一步影响我们的BED实践[The main question regards its broader applicability as it might be easily considered that such a model breaks down for SRS. The LQ fits data up to at least 18 or 10 Gy (depending on data)[54] How does this fit for SRS? It permits the comparison of different dose/fraction schemes of radiation delivery P (cure/compl) = EXP[-K x EXP (-alpha x dose-beta x dose2], with alpha being the single-hit co-efficient and beta being the double-hit co-efficient. It has been commonly considered that BED for SRS rises rapidly with the increased dose. However, the time factor seems more relevant and significantly influences the BED final values. It is also considered that BED falls more rapidly than physical dose.[55] The most effective dose for radiosurgery has been determined through progressive dose reduction over time.[56] It is further possible that the same mechanism will further influence our BED practice in the near future.]。
因此,LQ模型被认为是临床应用的主要放射生物学工具。LQ最多可以被认为是一个广泛的生物过程的累积效应的估计值,群体的异质性会在体外和体内进一步掩盖这些影响。尽管存在局限性,LQ模型仍然是估计细胞存活的最广为接受的模型,即使是在极限大分割的情况下。它还根据组织的α - β比值有把握地预测早发性和迟发性辐射毒性的可能性[The LQ model is thus considered the dominant radiobiological tool for clinical situations.[53] The LQ may be regarded as, at best, an estimate of the cumulative effects of a wide range of biological processes, with impacts that the heterogeneous nature of populations can further obscure both in vitro and in vivo.[53] Despite prevailing limitations, the LQ model remains the most accepted model for estimating cell survival, even in extreme hypo-fractionation. It also confidently predicts the chances of early- and late-onset radiation-induced toxicities based on the alpha-beta ratio of the tissues.]。
放射外科中的剂量率效应:可能只是冰山一角
γ射线和x射线是能量为100亿到20亿电子伏特(eV)的电磁辐射。对于GK的SRS,钴60源的活度决定了辐射剂量率(RDR),新源的RDR较高,且随着时间的推移而降低(半衰期为5.26年)。随着RDR的降低,处方相同物理剂量的治疗时间和照射时间增加。
以前认为,正常和敏感细胞的存活率随剂量的增加而增加,但不具有剂量率依赖性。然而,临床研究为这些参数提供了新的思路。Arai等发现,在SRS治疗三叉神经痛(TN)时,RDR在1.21 -3.74 Gy/min范围内不影响疼痛控制或并发症发生率,从而得出结论,对于这种病理,钴60源衰减不影响GK的结果。然而,在最近的一项研究中,Lee等在相同的病理中提出了相反的观点,他们指出较高的RDR导致更多的疼痛缓解和更低的复发率。
对于SRS治疗的前庭神经鞘瘤(VS), Smith等得出结论,GK-SRS提供了独立于RDR的有效肿瘤控制,并且低剂量率(<2.675 Gy/min)的患者在治疗后的听力损失和面神经功能障碍方面显著更好。Smith等提出的临界值为2.675 Gy/min,可获得较好的长期听力保存效果。这一数值与我们主张的GK治疗VS后6个月内出现急性和亚急性临床方式副反应事件(AREs)(截断值为2.5 Gy/min)非常相似。
这些发现如何影响单次分割SRS?需要进一步强调的是,照射时间可能比RDR更有意义。对于单个等中心的SRS,如TN,治疗时间相差4倍。对于良性肿瘤,如前庭神经鞘瘤、脑膜瘤等,使用多个等中心可能有10倍的差异。半衰期为5.26年的钴-60源的衰变是一个重要方面。个体患者在处方物理剂量和等剂量下的RDR取决于时间的可变因素。因此,有必要使用生物有效剂量(BED,见下文)的概念进一步纳入这两者(即处方剂量和时间),其中时间变化的影响可以考虑到处方的不同剂量。
生物有效剂量(BED)
1989年,《英国放射学杂志》发表了一篇综述,提出了BED这个术语,
基于放射生物学中的线性二次细胞存活,以取代Frank Ellis于1969年提出的名义标准剂量。21年后,同一作者(Fowler)对这个新参数的定义为“以无限低的剂量率或均匀分部的无限小的分割,给出与研究安排相同的对数细胞杀伤所需的总剂量”[“the total dose required to give the same log cell kill as the schedule being studied, at an infinitely low dose rate or with infinitely small fractions well-spaced out.”]。
在比较单次和分次方案以及其他不同的分割方案时,我们需要获得一个参数BED, BED将时间作为一个因素。其可处理肿瘤反应或正常组织反应。现在提出的问题是,时间是治疗时间、总时间、照射时间还是从a到b的时间(以天为单位),以及这些时间对SRS结局的潜在影响。总的来说,对于一些恶性肿瘤和一些快速增殖的正常组织来说,时间无疑是至关重要的。GK的急剧剂量梯度可能比物理剂量更剧烈地调节BED[When comparing single and fractionated regimens and other different fractionation schemes, we need to obtain a parameter, BED, which incorporates the time as a factor. Such can address the tumor response or the normal tissue reaction. The raising question is whether the time is the treatment time, the overall time, the beam-on time, or the time from fraction a to b (in days) and what impact such could potentially have on SRS outcomes. Overall, time is undoubtedly crucial for some malignant tumors and some rapidly proliferating normal tissues.[47] Sharp dose gradients for GK would potentially modulate BED more sharply than the physical dose.]。
分次的数量会影响BED吗?答案很可能是肯定的。在Anker和Shrieve的一篇论文中,对于前庭神经鞘瘤的治疗,按1-32的分次范围,估计BED为69- 92 Gy。有趣的是,较低的BED值对应5和10次分割。然而,单次处方剂量为12 Gy时,平均BED约为66.3 Gy(标准差3.8,范围54.1- 73.9)。因此,需要对这种方法和进一步的BED计算的一致性。然而,由于目前缺乏人体的临床数据,我们还远没有得到明确的答案。
初始定义BED = nd[1+d/(alpha/beta)],其中n为分次数,d为每次分割的剂量,alpha/beta(见下文)为相对辐射敏感性。然而,这样的定义已经得到了很大的改进。计算BED时考虑的参数为剂量、组织辐射敏感性、剂量率、细胞修复率和时间。组织的辐射敏感性取决于两种效应:致死性DNA损伤(不允许细胞修复,由单次辐射产生)和亚致死性DNA损伤(DNA修复,由多次辐射产生)。计算BED可能因使用的模型(包括单指数、双指数和相互修复)而异。需要强调的是,这些模型仍然是近似的,并没有被普遍接受的黄金标准。物理剂量仍然是目前SRS计划的金标准。
推导BED的公式是通过外推在猪表皮(快速增殖的非CNS正常组织,可能更适合快速增殖的肿瘤)或大鼠脊髓(非增殖的CNS正常组织)中获得的公式来计算的,进一步暗示了潜在的不准确的假设。但这些模型考虑了亚致死性损伤,可作为进一步评估的基础,应在临床上加以指出并在人体中进行研究。
一般情况下,在相同的处方物理剂量下,生物效应随着治疗时间的增加而降低。因此,这意味着可能在不久的将来,物理剂量将需要随着时间的延长而增加。然而,在讨论这些方面时,我们还必须承认设备的演变,特别是GK模型。在前B型中,两个连续的等中心之间的间隔时间约为6-8分钟,而在目前上市的Perfexion和ICON 型GK(Elekta Instruments AB, Stockholm, Sweden)中,等中心之间的间隔时间显著减少,在0.04 - 0.1分钟之间。这一点肯定会影响BED。然而,包括治疗床进和治疗床出,特别是患者在机器中的进出(我们这里不谈论计划外的间隙,这是另一个故事),当辐射源关闭,没有照射发生,在总体治疗时长方面,毫无疑问是有争议的,并要进行适当的评估,因为其在治疗时长本身没有位置。二这样做可能会计算BED时低估。
在临床实践中,Tuleasca等率先将BED用于TN的治疗,处方剂量范围为75 - 97.5 Gy, BED范围为1539.4- 2665.5 Gy2.47。作者发现BED和感觉减退表现之间有明确的关系,BED为1800 Gy2.47后,发生率从5%增加到2600 Gy2.47后的42%。-此外,Graffeo等-评估了作为SRS治疗肢端肥大症后结局的BED对胰岛素样生长因子指数的影响。BED预测生化缓解。Balossier和Tuleasca等在SRS治疗肢端肥大症和库欣病的背景下提出了类似的发现。在动静脉畸形中,对于几乎均匀的24 Gy物理剂量处方, Tuleasca以照射时间为参考,采用GK4C 型治疗患者,计算出BED值在106.7 -246.8 Gy2.47范围内。BED是闭塞的最强的预测因子。Nesvick等进一步验证了同样的病理结果。Tuleasca等首次进一步评估了BED与SRS治疗VS后体积变化相关的作用。平均BED为66.3 Gy(标准差3.8,范围54.1-73.9)。作者在大型队列中提出,对于统一接受相同边缘物理剂量处方的患者,较高的BED与肿瘤体积变化呈线性显著相关。在一项评估SRS治疗脑膜瘤的研究中,BED>50 Gy2.47与较低的局部失效发生率相关,而处方剂量无统计学意义。
结论和观点
尚不完全清楚放射外科的放射生物学。线性-二次模型是有帮助的,但不应被视为教条。验证这些模型的临床数据有限。SRS技术挑战了放射生物学的基本原理,超出了人们对该技术的预期。我们需要更好的模型来优化单次和大分割SRS在临床中的应用。
我们假设,SRS的未来将由放射生物学(特别是BED)和这些领域的进展而不是技术发展本身塑造。
目前的SRS治疗计划是以物理辐射剂量为金标准的治疗方法。然而,BED似乎更有意义。我们认为BED将在未来十年内压倒目前的金标准。这将塑造SRS的未来,处方定制BED以获得理想的放射生物学效应。生物优化将成为一个关键的概念,它将取代我们认为在单次SRS和大分割放射外科中合适的一切。然而,这只是漫长道路的开始。因此,我们需要更好地了解我们目前所做的和我们现在所了解的。
声明:脑医汇旗下神外资讯、神介资讯、神内资讯、脑医咨询、AiBrain 所发表内容之知识产权为脑医汇及主办方、原作者等相关权利人所有。