今天为大家分享的是“景昱—神经科学专栏”第一百零八期,由上海交通大学医学院附属瑞金医院胡柯嘉带来的:“fMRI功能连接预测丘脑前核DBS治疗癫痫的预后”,内容精彩,欢迎阅读。
癫痫是一种常见的全球性残疾和死亡原因,大约20%-40%的癫痫患者属于药物难治性癫痫,目前对此类癫痫机制知之甚少,这使得对其治疗较困难。早期建立的癫痫疾病模型主要集中在采用离散的致癫痫源,但其他多种形式的癫痫,特别是颞叶癫痫(Temporal Lobe Epilepsy,TLE),正日益被认为是具有广泛功能和结构变化的脑网络类疾病。此外,一些癫痫患者可能有多病灶性发作,使局部化的研究策略变得困难。

虽然与对照组相比,癫痫患者的许多脑网络已有不同的变化,但没有一个像默认模式网络(Default Mode Network,DMN)的静息态网络那样被广泛研究过。DMN是一个广泛分布的脑网络,在休息期间优先活跃,在任务介入期间停止活跃。DMN的核心部分包括后扣带皮层(Posterior Cingulate Cortex,PCC),楔前叶,下顶叶(Inferior Parietal Lobule),上顶叶(Superior Parietal Lobe),内侧前额叶皮层(Medial Prefrontal Cortex),压后皮层(Retrosplenial cortex),海马,海马旁皮质(Parahippocampal cortex)和小脑。
之前的研究表明在发作间期癫痫样放电和癫痫发作时候DMN失活或抑制可能与失去意识有关。既往研究涉及了癫痫发作的其他静息状态网络,可能在癫痫的认知效应中发挥作用,例如注意网络和奖励/情感网络,对癫痫的理解从局部转变为网络可能会对治疗结果的变化有所启发。难治性癫痫的一种新兴治疗方法是深部脑刺激(Deep Brain Stimulation,DBS)。目前的靶点包括中心-束旁(Centromedian-parafascicular,Cm-PF)复合体,海马和丘脑前核(Anterior Nucleus of the Thalamus,ANT)。刺激丘脑前核用于治疗癫痫的SANTE(Stimulation of the Anterior Nuclei of Thalamus for Epilepsy)试验结果显示ANT刺激治疗局灶性癫痫的长期疗效和安全性,但结果存在显著的变异。结果变异的一个潜在原因是DBS靶向准确性不足,大约10%的电极不在ANT内。目前已经提出了许多提高ANT靶向定位准确性的改进,但是单纯依靠DBS术中直接定位靶点仍有不足。
为了更好地理解DBS刺激机制和潜在改善疗效,美国Mayo诊所的Erik H. Middlebrooks等研究者评估了ANT DBS治疗与VTA功能连接的相关性,通过评估ANT DBS的组织活化量(Volume of Tissue Activated,VTA)以及静息状态功能连接谱。论文发表于2018年8月的《Neurosurgical Focus》杂志。(REF: Middlebrooks EH, Grewal SS, Stead M, Lundstrom BN, Worrell GA, Van Gompel JJ. Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus. 2018 Aug;45(2):E7.)
该研究回顾性分析包括6名接受ANT-DBS治疗难治性癫痫的患者。根据DBS后癫痫发作减少,患者被分为2类:“响应者”组癫痫发作频率降低≥50%,而“无响应者”组癫痫发作率降低<50%。术后对DBS电极进行定位并根据参数设置计算生成VTA。VTA用作进行的静息状态功能性MRI连接性分析的种子点。在响应者和非响应者组之间评估皮质与VTA的连接的差异。
表1: 6例接受ANT DBS治疗难治性癫痫患者的人口统计学数据和术后结果
图1. 响应者(绿色星号)和无响应者(红色星号)的左侧丘脑(A和B)和右侧丘脑(C和D)内远端阴极接触(K1 / K9)的归一化空间位置。 所有电极均为Medtronic 3389。接触位置记录在DBS内在模板图谱(DISTAL)中,显示与丘脑前核的关系(箭头)。
结果显示,经过平均29.7月的术后随访,共3个无响应者,3个响应者。6名患者中的5个加做了额外双侧靶点(4例海马和1例Cm-PF复合体),而在这5名患者中,4名患者接受两个靶点的刺激(3例ANT +海马和1例ANT + Cm-PF复合体)。 这4患者中,2例在响应组中,2例在无响应组中。
图2:响应者(左)和无响应者(右)的组平均t-分数图显示正相关区域(地图上的红黄色)和反相关(地图上的蓝绿色)。
与无响应者相比,ANT DBS反应者显示出与默认模式网络的更大的正连通性,包括后扣带皮层,内侧前额叶皮层,下顶叶小叶和楔前叶。有趣的是,在响应者的海马体也存在一致的但是是反相关性变化。
图3:响应者中左右半球的连接区域的连通性比无响应者更高。响应者具有更高“正”相关性的区域(以红橙色显示),较高的“负”相关区域蓝绿色显示。地形图由平均组图的差异产生,并且阈值化为p值<0.05,校正自由度。
图4:通过海马体的冠状图像(y = -26;MNI模板空间)显示了无应答者(A)和应答者(B)的平均负相关的程度,(C)显示了两者之间平均差异。 ROI(Region of Interest)分析(下图)显示每位患者的海马MNI坐标为±30 / -26 / -11(平均t评分和ROI内所有非零的体素)。
研究者最后总结,基于他们的初步研究,癫痫患者接受ANT DBS后在默认模式网络中增加了连接性,这增加了癫痫发作的阈值。另外,通过增加的海马γ-氨基丁酸(GABA)浓度介导的对海马的抑制作用可能有助于抑制癫痫发作,而哪些因素是癫痫发作的主要驱动因素,或它们是否是互补效应,需要进一步研究,识别此连接与丘脑VTA相关的概况可能有助于提高ANT DBS术前功能性定位的效率。
1. Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, et al: Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 18:130–142, 2018
2. Avants BB, Epstein CL, Grossman M, Gee JC: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12:26–41, 2008
3. Benuzzi F, Ballotta D, Mirandola L, Ruggieri A, Vaudano AE, Zucchelli M, et al: An EEG-fMRI study on the termination of generalized spike-and-wave discharges in absence epilepsy. PLoS One 10:e0130943, 2015
4. Bettus G, Bartolomei F, Confort-Gouny S, Guedj E, Chauvel P, Cozzone PJ, et al: Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 81:1147– 1154, 2010
5. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, et al: Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30:1580–1591, 2009
6. Bharath RD, Sinha S, Panda R, Raghavendra K, George L, Chaitanya G, et al: Seizure frequency can alter brain connectivity: evidence from resting-state fMRI. AJNR Am J Neuroradiol 36:1890–1898, 2015
7. Blumenfeld H, McNally KA, Vanderhill SD, Paige AL, Chung R, Davis K, et al: Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex 14:892–902, 2004
8. Bonilha L, Jensen JH, Baker N, Breedlove J, Nesland T, Lin JJ, et al: The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy. Neurology 84:1846–1853, 2015
9. Buckner RL, Andrews-Hanna JR, Schacter DL: The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38, 2008
10. Buentjen L, Kopitzki K, Schmitt FC, Voges J, Tempelmann C, Kaufmann J, et al: Direct targeting of the thalamic antero- ventral nucleus for deep brain stimulation by T1-weighted magnetic resonance imaging at 3 T. Stereotact Funct Neurosurg 92:25–30, 2014
11. Cataldi M, Avoli M, de Villers-Sidani E: Resting state net- works in temporal lobe epilepsy. Epilepsia 54:2048–2059, 2013
12. Chai XJ, Castañón AN, Ongür D, Whitfield-Gabrieli S: Anticorrelations in resting state networks without global signal regression. Neuroimage 59:1420–1428, 2012
13. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al: Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848– 13853, 2006
14. Danielson NB, Guo JN, Blumenfeld H: The default mode network and altered consciousness in epilepsy. Behav Neurol 24:55–65, 2011
15. Engel J Jr, McDermott MP, Wiebe S, Langfitt JT, Stern JM, Dewar S, et al: Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307:922–930, 2012
16. Ewert S, Plettig P, Li N, Chakravarty MM, Collins DL, Herrington TM, et al: Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage 170:271–282, 2018
17. Fahoum F, Zelmann R, Tyvaert L, Dubeau F, Gotman J: Epileptic discharges affect the default mode network—FMRI and intracerebral EEG evidence. PLoS One 8:e68038, 2013
18. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908, 2010
19. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327, 2011
20. Gibson WS, Ross EK, Han SR, Van Gompel JJ, Min HK, Lee KH: Anterior thalamic deep brain stimulation: functional activation patterns in a large animal model. Brain Stimul 9:770–773, 2016
21. Hamandi K, Powell HWR, Laufs H, Symms MR, Barker GJ, Parker GJM, et al: Combined EEG-fMRI and tractography to visualise propagation of epileptic activity. J Neurol Neuro- surg Psychiatry 79:594–597, 2008
22. Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM: Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43:603–608, 2002
23. Horn A, Kühn AA: Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107:127–135, 2015
24. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al: Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 82:67–78, 2017
25. Kim HY, Hur YJ, Kim HD, Park KM, Kim SE, Hwang TG: Modification of electrophysiological activity pattern after anterior thalamic deep brain stimulation for intractable epilepsy: report of 3 cases. J Neurosurg 126:2028–2035, 2017
26. Kim SH, Lim SC, Yang DW, Cho JH, Son BC, Kim J, et al: Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat 13:2607–2619, 2017
27. Kobayashi E, Bagshaw AP, Bénar CG, Aghakhani Y, Andermann F, Dubeau F, et al: Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 47:343–354, 2006
28. Koshino H, Minamoto T, Yaoi K, Osaka M, Osaka N: Co- activation of the default mode network regions and working memory network regions during task preparation. Sci Rep 4:5954, 2014
29. Laufs H, Hamandi K, Salek-Haddadi A, Kleinschmidt AK, Duncan JS, Lemieux L: Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp 28:1023–1032, 2007
30. Lehtimäki K, Coenen VA, Gonçalves Ferreira A, Boon P, Elger C, Taylor RS, et al: The surgical approach to the ante- rior nucleus of thalamus in patients with refractory epilepsy: experience from the International Multicenter Registry (MORE). Neurosurgery [epub ahead of print], 2018
31. Li MCH, Cook MJ: Deep brain stimulation for drug-resistant epilepsy. Epilepsia 59:273–290, 2018
32. Liang Z, King J, Zhang N: Anticorrelated resting-state functional connectivity in awake rat brain. Neuroimage 59:1190– 1199, 2012
33. Liao W, Zhang Z, Mantini D, Xu Q, Ji GJ, Zhang H, et al: Dynamical intrinsic functional architecture of the brain during absence seizures. Brain Struct Funct 219:2001–2015, 2014
34. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al: Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One 5:e8525, 2010
35. Liu HG, Yang AC, Meng DW, Chen N, Zhang JG: Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 1477:37–44, 2012
36. Middlebrooks EH, Holanda VM, Tuna IS, Deshpande HD, Bredel M, Almeida L, et al: A method for pre-operative single-subject thalamic segmentation based on probabilistic tractography for essential tremor deep brain stimulation. Neuroradiology 60:303–309, 2018
37. Middlebrooks EH, Tuna IS, Grewal SS, Almeida L, Heckman M, Lesser E, et al: Segmentation of the globus pallidus inter- nus using probabilistic diffusion tractography for deep brain stimulation targeting in Parkinson’s disease. AJNR Am J Neuroradiol [epub ahead of print], 2018
38. Middlebrooks EH, Ver Hoef L, Szaflarski JP: Neuroimaging in epilepsy. Curr Neurol Neurosci Rep 17:32, 2017
39. Morgan VL, Rogers BP, Sonmezturk HH, Gore JC, Abou- Khalil B: Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia 52:1741–1749, 2011
40. Möttönen T, Katisko J, Haapasalo J, Tähtinen T, Kiekara T, Kähärä V, et al: Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: delineation using 3 T MRI and intraoperative micro- electrode recording. Neuroimage Clin 7:823–829, 2015
41. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, et al: GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10:1515–1517, 2007
42. Osorio I, Overman J, Giftakis J, Wilkinson SB: High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia 48:1561–1571, 2007
43. Rajpoot K, Riaz A, Majeed W, Rajpoot N: Functional connectivity alterations in epilepsy from resting-state functional MRI. PLoS One 10:e0134944, 2015
44. Salanova V, Witt T, Worth R, Henry TR, Gross RE, Nazzaro JM, et al: Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84:1017– 1025, 2015
45. Schönecker T, Kupsch A, Kühn AA, Schneider GH, Hoffmann KT: Automated optimization of subcortical cerebral MR imaging-atlas coregistration for improved postoperative electrode localization in deep brain stimulation. AJNR Am J Neuroradiol 30:1914–1921, 2009
46. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al: The default mode network and self- referential processes in depression. Proc Natl Acad Sci U S A 106:1942–1947, 2009
47. Shi L, Yang AC, Li JJ, Meng DW, Jiang B, Zhang JG: Favorable modulation in neurotransmitters: effects of chronic anterior thalamic nuclei stimulation observed in epileptic monkeys. Exp Neurol 265:94–101, 2015
48. Tatum WO IV: Mesial temporal lobe epilepsy. J Clin Neurophysiol 29:356–365, 2012
49. Van Gompel JJ, Klassen BT, Worrell GA, Lee KH, Shin C, Zhao CZ, et al: Anterior nuclear deep brain stimulation guided by concordant hippocampal recording. Neurosurg Focus 38(6):E9, 2015
50. Wu C, D’Haese PF, Pallavaram S, Dawant BM, Konrad P, Sharan AD: Variations in thalamic anatomy affect target- ing in deep brain stimulation for epilepsy. Stereotact Funct Neurosurg 94:387–396, 2016
51. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Wang Z, et al: Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res 1323:152– 160, 2010
52. Zumsteg D, Lozano AM, Wieser HG, Wennberg RA: Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:192–207, 2006